SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "AMNE:(MEDICIN OCH HÄLSOVETENSKAP Medicinska och farmaceutiska grundvetenskaper) ;hsvcat:3;pers:(Ohlsson Claes 1965);srt2:(2020-2023)"

Sökning: AMNE:(MEDICIN OCH HÄLSOVETENSKAP Medicinska och farmaceutiska grundvetenskaper) > Medicin och hälsovetenskap > Ohlsson Claes 1965 > (2020-2023)

  • Resultat 1-10 av 30
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Franks, P. W., et al. (författare)
  • Technological readiness and implementation of genomic-driven precision medicine for complex diseases
  • 2021
  • Ingår i: Journal of Internal Medicine. - : Wiley. - 0954-6820 .- 1365-2796. ; 290:3, s. 602-620
  • Forskningsöversikt (refereegranskat)abstract
    • The fields of human genetics and genomics have generated considerable knowledge about the mechanistic basis of many diseases. Genomic approaches to diagnosis, prognostication, prevention and treatment - genomic-driven precision medicine (GDPM) - may help optimize medical practice. Here, we provide a comprehensive review of GDPM of complex diseases across major medical specialties. We focus on technological readiness: how rapidly a test can be implemented into health care. Although these areas of medicine are diverse, key similarities exist across almost all areas. Many medical areas have, within their standards of care, at least one GDPM test for a genetic variant of strong effect that aids the identification/diagnosis of a more homogeneous subset within a larger disease group or identifies a subset with different therapeutic requirements. However, for almost all complex diseases, the majority of patients do not carry established single-gene mutations with large effects. Thus, research is underway that seeks to determine the polygenic basis of many complex diseases. Nevertheless, most complex diseases are caused by the interplay of genetic, behavioural and environmental risk factors, which will likely necessitate models for prediction and diagnosis that incorporate genetic and non-genetic data.
  •  
2.
  • Nethander, Maria, 1980, et al. (författare)
  • BMD-Related Genetic Risk Scores Predict Site-Specific Fractures as Well as Trabecular and Cortical Bone Microstructure
  • 2020
  • Ingår i: The Journal of clinical endocrinology and metabolism. - : The Endocrine Society. - 1945-7197 .- 0021-972X. ; 105:4
  • Tidskriftsartikel (refereegranskat)abstract
    • CONTEXT: It is important to identify patients at highest risk of fractures. OBJECTIVE: To compare the separate and combined performances of bone-related genetic risk scores (GRSs) for prediction of forearm, hip and vertebral fractures separately, as well as of trabecular and cortical bone microstructure parameters separately. DESIGN, SETTING, AND PARTICIPANTS: Using 1103 single nucleotide polymorphisms (SNPs) independently associated with estimated bone mineral density of the heel (eBMD), we developed a weighted GRS for eBMD and determined its contribution to fracture prediction beyond 2 previously developed GRSs for femur neck BMD (49 SNPs) and lumbar spine BMD (48 SNPs). Associations between these GRSs and forearm (ncases = 1020; ncontrols = 2838), hip (ncases = 1123; ncontrols = 2630) and vertebral (ncases = 288; ncontrols = 1187) fractures were evaluated in 3 Swedish cohorts. Associations between the GRSs and trabecular and cortical bone microstructure parameters (n = 426) were evaluated in the MrOS Sweden cohort. RESULTS: We found that eBMDGRS was the only significant independent predictor of forearm and vertebral fractures while both FN-BMDGRS and eBMDGRS were significant independent predictors of hip fractures. The eBMDGRS was the major GRS contributing to prediction of trabecular bone microstructure parameters while both FN-BMDGRS and eBMDGRS contributed information for prediction of cortical bone microstructure parameters. CONCLUSIONS: The eBMDGRS independently predicts forearm and vertebral fractures while both FN-BMDGRS and eBMDGRS contribute independent information for prediction of hip fractures. We propose that eBMDGRS captures unique information about trabecular bone microstructure useful for prediction of forearm and vertebral fractures. These findings may facilitate personalized medicine to predict site-specific fractures as well as cortical and trabecular bone microstructure separately.
  •  
3.
  •  
4.
  • Risal, Sanjiv, et al. (författare)
  • Transgenerational transmission of reproductive and metabolic dysfunction in the male progeny of polycystic ovary syndrome
  • 2023
  • Ingår i: Cell Reports Medicine. - : Cell Press. - 2666-3791. ; 4:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The transgenerational maternal effects of polycystic ovary syndrome (PCOS) in female progeny are being revealed. As there is evidence that a male equivalent of PCOS may exists, we ask whether sons born to mothers with PCOS (PCOS-sons) transmit reproductive and metabolic phenotypes to their male progeny. Here, in a register-based cohort and a clinical case-control study, we find that PCOS-sons are more often obese and dyslipidemic. Our prenatal androgenized PCOS-like mouse model with or without diet-induced obesity confirmed that reproductive and metabolic dysfunctions in first-generation (F1) male offspring are passed down to F3. Sequencing of F1–F3 sperm reveals distinct differentially expressed (DE) small non-coding RNAs (sncRNAs) across generations in each lineage. Notably, common targets between transgenerational DEsncRNAs in mouse sperm and in PCOS-sons serum indicate similar effects of maternal hyperandrogenism, strengthening the translational relevance and highlighting a previously underappreciated risk of transmission of reproductive and metabolic dysfunction via the male germline. 
  •  
5.
  • Lahore, G. F., et al. (författare)
  • Vitamin D3 receptor polymorphisms regulate T cells and T cell-dependent inflammatory diseases
  • 2020
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 117:40, s. 24986-24997
  • Tidskriftsartikel (refereegranskat)abstract
    • It has proven difficult to identify the underlying genes in complex autoimmune diseases. Here, we use forward genetics to identify polymorphisms in the vitamin D receptor gene (Vdr) promoter, controlling Vdr expression and T cell activation. We isolated these polymorphisms in a congenic mouse line, allowing us to study the immunomodulatory properties of VDR in a physiological context. Congenic mice overexpressed VDR selectively in T cells, and thus did not suffer from calcemic effects. VDR overexpression resulted in an enhanced antigen-specific T cell response and more severe autoimmune phenotypes. In contrast, vitamin D3-deficiency inhibited T cell responses and protected mice from developing autoimmune arthritis. Our observations are likely translatable to humans, as Vdr is overexpressed in rheumatic joints. Genetic control of VDR availability codetermines the proinflammatory behavior of T cells, suggesting that increased presence of VDR at the site of inflammation might limit the antiinflammatory properties of its ligand.
  •  
6.
  • Hagberg Thulin, Malin, et al. (författare)
  • Inhibition of STAT3 prevents bone metastatic progression of prostate cancer in vivo
  • 2021
  • Ingår i: Prostate. - : Wiley. - 0270-4137 .- 1097-0045. ; 81:8, s. 452-462
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Prostate cancer (PC) metastasizes to the skeleton forming predominantly sclerotic lesions, and there is currently no cure for bone metastatic disease. The transcription factor signal transducer and activator of transcription 3 (STAT3) is implicated as a metastatic driver, but its potential as therapeutic target in bone metastasis has not been investigated. In this study, we evaluated for the first time a STAT3 inhibitor, Napabucasin, as a therapeutic option for bone metastatic PC. Methods Effects of STAT3 inhibitors, Stattic and Napabucasin, on metastatic potential in PC cells were studied in vitro by assessment of migration capacity, self-renewal potential, and tumorsphere formation. For evaluation of the role of STAT3 in initial skeletal establishment of PC cells as well as in progressed castration-resistant PC (CRPC) in bone, human VCaP prostate cancer cells were inoculated in the tibia of mice which subsequently were treated with the STAT3 inhibitor Napabucasin. Bone specimens were analyzed using computed tomography (CT), immunohistochemistry, and quantitative polymerase chain reaction. Results The small molecule STAT3 inhibitors Stattic and Napabucasin both effectively impaired metastatic potential of PC cells in vitro. Furthermore, treatment with Napabucasin prevented metastatic establishment in tibial bones in vivo and thereby also the tumor-induced sclerotic bone response seen in vehicle-treated VCaP xenografts. In addition, treatment with Napabucasin of established bone CRPC significantly decreased both tumor burden and tumor-induced trabecular bone volume compared with effects seen in vehicle-treated animals. Anti-mitotic effects were confirmed by decreased Ki67 staining in Napabucasin-treated xenografts compared with vehicle-treated xenografts. Alterations of gene expression in the femoral bone marrow (BM) niche toward the maintenance of hematopoietic stem cells and the myeloid lineage were demonstrated by quantitative real-time polymerase chain reaction and were further reflected by a substantial increase in the number of erythrocytes in BM of Napabucasin-treated mice. Furthermore, a unique pattern of STAT3 phosphorylation in osteoblasts/stromal cells surrounding the areas of tumor cells was demonstrated immunohistochemically in bone xenograft models using several different PC cell lines. Conclusion Inhibition of STAT3 activity disrupts the bone metastatic niche and targets both the skeletal establishment of PC and advanced bone metastatic CRPC in mice, suggesting STAT3 as a candidate for molecular targeted therapies of skeletal metastatic disease.
  •  
7.
  • Forgetta, V., et al. (författare)
  • Development of a polygenic risk score to improve screening for fracture risk: A genetic risk prediction study
  • 2020
  • Ingår i: PLoS medicine. - : Public Library of Science (PLoS). - 1549-1277 .- 1549-1676. ; 17:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Since screening programs identify only a small proportion of the population as eligible for an intervention, genomic prediction of heritable risk factors could decrease the number needing to be screened by removing individuals at low genetic risk. We therefore tested whether a polygenic risk score for heel quantitative ultrasound speed of sound (SOS)-a heritable risk factor for osteoporotic fracture-can identify low-risk individuals who can safely be excluded from a fracture risk screening program. Methods and findings A polygenic risk score for SOS was trained and selected in 2 separate subsets of UK Biobank (comprising 341,449 and 5,335 individuals). The top-performing prediction model was termed "gSOS", and its utility in fracture risk screening was tested in 5 validation cohorts using the National Osteoporosis Guideline Group clinical guidelines (N= 10,522 eligible participants). All individuals were genome-wide genotyped and had measured fracture risk factors. Across the 5 cohorts, the average age ranged from 57 to 75 years, and 54% of studied individuals were women. The main outcomes were the sensitivity and specificity to correctly identify individuals requiring treatment with and without genetic prescreening. The reference standard was a bone mineral density (BMD)-based Fracture Risk Assessment Tool (FRAX) score. The secondary outcomes were the proportions of the screened population requiring clinical-risk-factor-based FRAX (CRF-FRAX) screening and BMD-based FRAX (BMD-FRAX) screening. gSOS was strongly correlated with measured SOS (r(2)= 23.2%, 95% CI 22.7% to 23.7%). Without genetic prescreening, guideline recommendations achieved a sensitivity and specificity for correct treatment assignment of 99.6% and 97.1%, respectively, in the validation cohorts. However, 81% of the population required CRF-FRAX tests, and 37% required BMD-FRAX tests to achieve this accuracy. Using gSOS in prescreening and limiting further assessment to those with a low gSOS resulted in small changes to the sensitivity and specificity (93.4% and 98.5%, respectively), but the proportions of individuals requiring CRF-FRAX tests and BMD-FRAX tests were reduced by 37% and 41%, respectively. Study limitations include a reliance on cohorts of predominantly European ethnicity and use of a proxy of fracture risk. Conclusions Our results suggest that the use of a polygenic risk score in fracture risk screening could decrease the number of individuals requiring screening tests, including BMD measurement, while maintaining a high sensitivity and specificity to identify individuals who should be recommended an intervention. Author summaryWhy was this study done? Osteoporosis screening identifies only a small proportion of the screened population to be eligible for intervention. The prediction of heritable risk factors using polygenic risk scores could decrease the number of screened individuals by reassuring those with low genetic risk. We investigated whether the genetic prediction of heel quantitative ultrasound speed of sound (SOS)-a heritable risk factor for osteoporotic fracture-could be incorporated into an established screening guideline to identify individuals at low risk for osteoporosis. What did the researchers do and find? Using UK Biobank, we developed a polygenic risk score (gSOS) consisting of 21,717 genetic variants that was strongly correlated with SOS ( = 23.2%). Using the National Osteoporosis Guideline Group clinical assessment guidelines in 5 validation cohorts, we estimate that reassuring individuals with a high gSOS, rather than doing further assessments, could reduce the number of clinical-risk-factor-based Fracture Risk Assessment Tool (FRAX) tests and bone-density-measurement-based FRAX tests by 37% and 41%, respectively, while maintaining a high sensitivity and specificity to identify individuals who should be recommended an intervention. What do these findings mean? We show that genetic pre-screening could reduce the number of screening tests needed to identify individuals at risk of osteoporotic fractures. Therefore, the potential exists to improve the efficiency of osteoporosis screening programs without large losses in sensitivity or specificity to identify individuals who should receive an intervention. Further translational studies are needed to test the clinical applications of this polygenic risk score; however, our work shows how such scores could be tested in the clinic.
  •  
8.
  • Lu, T. Y., et al. (författare)
  • Improved prediction of fracture risk leveraging a genome-wide polygenic risk score
  • 2021
  • Ingår i: Genome Medicine. - : Springer Science and Business Media LLC. - 1756-994X. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Accurately quantifying the risk of osteoporotic fracture is important for directing appropriate clinical interventions. While skeletal measures such as heel quantitative speed of sound (SOS) and dual-energy X-ray absorptiometry bone mineral density are able to predict the risk of osteoporotic fracture, the utility of such measurements is subject to the availability of equipment and human resources. Using data from 341,449 individuals of white British ancestry, we previously developed a genome-wide polygenic risk score (PRS), called gSOS, that captured 25.0% of the total variance in SOS. Here, we test whether gSOS can improve fracture risk prediction. Methods We examined the predictive power of gSOS in five genome-wide genotyped cohorts, including 90,172 individuals of European ancestry and 25,034 individuals of Asian ancestry. We calculated gSOS for each individual and tested for the association between gSOS and incident major osteoporotic fracture and hip fracture. We tested whether adding gSOS to the risk prediction models had added value over models using other commonly used clinical risk factors. Results A standard deviation decrease in gSOS was associated with an increased odds of incident major osteoporotic fracture in populations of European ancestry, with odds ratios ranging from 1.35 to 1.46 in four cohorts. It was also associated with a 1.26-fold (95% confidence interval (CI) 1.13-1.41) increased odds of incident major osteoporotic fracture in the Asian population. We demonstrated that gSOS was more predictive of incident major osteoporotic fracture (area under the receiver operating characteristic curve (AUROC) = 0.734; 95% CI 0.727-0.740) and incident hip fracture (AUROC = 0.798; 95% CI 0.791-0.805) than most traditional clinical risk factors, including prior fracture, use of corticosteroids, rheumatoid arthritis, and smoking. We also showed that adding gSOS to the Fracture Risk Assessment Tool (FRAX) could refine the risk prediction with a positive net reclassification index ranging from 0.024 to 0.072. Conclusions We generated and validated a PRS for SOS which was associated with the risk of fracture. This score was more strongly associated with the risk of fracture than many clinical risk factors and provided an improvement in risk prediction. gSOS should be explored as a tool to improve risk stratification to identify individuals at high risk of fracture.
  •  
9.
  • Nethander, Maria, 1980, et al. (författare)
  • An atlas of genetic determinants of forearm fracture.
  • 2023
  • Ingår i: Nature genetics. - : Springer Nature. - 1546-1718 .- 1061-4036. ; 55:11, s. 1820-1830
  • Tidskriftsartikel (refereegranskat)abstract
    • Osteoporotic fracture is among the most common and costly of diseases. While reasonably heritable, its genetic determinants have remained elusive. Forearm fractures are the most common clinically recognized osteoporotic fractures with a relatively high heritability. To establish an atlas of the genetic determinants of forearm fractures, we performed genome-wide association analyses including 100,026 forearm fracture cases. We identified 43 loci, including 26 new fracture loci. Although most fracture loci associated with bone mineral density, we also identified loci that primarily regulate bone quality parameters. Functional studies of one such locus, at TAC4, revealed that Tac4-/- mice have reduced mechanical bone strength. The strongest forearm fracture signal, at WNT16, displayed remarkable bone-site-specificity with no association with hip fractures. Tall stature and low body mass index were identified as new causal risk factors for fractures. The insights from this atlas may improve fracture prediction and enable therapeutic development to prevent fractures.
  •  
10.
  • Medina-Gomez, C., et al. (författare)
  • Bone mineral density loci specific to the skull portray potential pleiotropic effects on craniosynostosis
  • 2023
  • Ingår i: Communications Biology. - 2399-3642. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Skull bone mineral density (SK-BMD) provides a suitable trait for the discovery of key genes in bone biology, particularly to intramembranous ossification, not captured at other skeletal sites. We perform a genome-wide association meta-analysis (n similar to 43,800) of SK-BMD, identifying 59 loci, collectively explaining 12.5% of the trait variance. Association signals cluster within gene-sets involved in skeletal development and osteoporosis. Among the four novel loci (ZIC1, PRKAR1A, AZIN1/ATP6V1C1, GLRX3), there are factors implicated in intramembranous ossification and as we show, inherent to craniosynostosis processes. Functional follow-up in zebrafish confirms the importance of ZIC1 on cranial suture patterning. Likewise, we observe abnormal cranial bone initiation that culminates in ectopic sutures and reduced BMD in mosaic atp6v1c1 knockouts. Mosaic prkar1a knockouts present asymmetric bone growth and, conversely, elevated BMD. In light of this evidence linking SK-BMD loci to craniofacial abnormalities, our study provides new insight into the pathophysiology, diagnosis and treatment of skeletal diseases.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 30

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy